
ScreenKey
TFT100 Dev Kit

User’s Guide 1.0
October, 2009

Based on TFT128 version 1.5

www.ScreenKeys.com

ii ScreenKey TFT100 Dev Kit User’s Guide Introduction

ScreenKey TFT100 Dev Kit

User’s Guide

Information in this document is subject to change without notice. The latest
revisions may be accessed on the SKI Web site.

 Web: www.ScreenKeys.com

Technical Support is available

 via Email support@screenkeys.com

 via Web: www.screenkeys.com

© 2009 SK Interfaces Ltd.
All rights reserved.

DISCLAIMER:

ScreenKeys reserves the right to revise data file formats and functionality
at any time.

 ScreenKey TFT100 Dev Kit Overview iii

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 3 of 22

Table of Contents

SCREENKEY TFT100 DEV KIT OVERVIEW ... 4
SOFTWARE UPDATES ... 4
SAMPLE CODE ... 4
DISCLAIMER .. 4
TFT100 SCHEMATIC... 5
DEV KIT HARDWARE... 5
PROGRAMMING TOOLS ... 7
ATMEL FLIP.. 7
SCREENKEYS USB PROGRAMMER .. 7
PROGRAMMING MODE... 8
FIRST-TIME DEVICE IDENTIFICATION... 8
SDCC COMPILER .. 9
STARTUP SEQUENCE.. 9
DEMONSTRATION SOURCE CODE.. 10
FILE LISTING ... 10
SOURCE CODE STRUCTURE.. 10
TFT128 COMMAND IMPLEMENTATION.. 11
TEXT HANDLING.. 12
HIGH-SPEED MODE ... 12
COMMANDS DEMONSTRATED.. 13
IMAGE DESCRIPTION & PREPARATION ... 14
256-COLOR IMAGES .. 14
16-BIT COLOR PALETTE... 18
APPENDICES

DOCUMENTATION CONTROL .. 21
A.1 Change Control.. 21
A.2 Abbreviations Used/Terms of Reference .. 21
A.3 Historical Change Reference ... 21
A.4 Change Summary ... 22

 4

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 4 of 22

I N T R O D U C T I O N

ScreenKey TFT100 Dev Kit
Overview

Introduction
The TFT100 Dev Kit allows developers to understand and experiment with the
features and functionality of the TFT128 ScreenKey.

The TFT100 Dev Kit contains one on-board TFT128 switch and includes source
firmware written in ‘C’ which can be easily modified and recompiled using a free
‘C’ compiler. Developers can easily modify the provided source code to generate
their own images, text and other functionality to test and prototype using the
TFT128 ScreenKey.

The TFT100 Dev Kit is reprogrammable via USB.

Software Updates
From time to time, SKI will issue new firmware updates as well as new
programming tools. These can be downloaded from ScreenKeys website at
www.ScreenKeys.com.

Sample Code
Sample code, in C, is provided but new versions may be released from time to
time to illustrate how to interface to the TFT128 ScreenKey. Sample code can be
accessed from the ScreenKeys web site at www.ScreenKeys.com.

Disclaimer
ScreenKeys reserves the right to revise this user manual or product specifications
at any time. Code written to interface to a TFT128 ScreenKey should check the
version number (see TFT128 Datasheet for reading version number) to ensure
compatibility.

http://www.screenkeys.com/
http://www.screenkeys.com/

 5

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 5 of 22

H A R D W A R E

TFT100 Schematic

Dev Kit Hardware
The TFT100 Dev Kit is a simple microcontroller unit that interfaces to a TFT128
ScreenKey via a 4-wire SPI interface.

The schematic is shown on the following page.

The MCU is an Atmel AT89C5131 which is reprogrammable in-circuit via USB.
The power supply to the board is taken from the USB 5.0Vdc supply and down-
converted to 3.3Vdc. The MCU and TFT128 are both powered at 3.3Vdc. The
MCU has 32KB flash memory and 1Kb RAM.

Currently, the USB interface is only used for programming and for power supply
purposes. The TFT100 does not enumerate on the USB bus to offer direct control.

The Atmel AT89C5131 provides an integrated SPI interface. This is connected to
the TFT128 as follows with the MCU initialised as the SPI master:

TFT128 AT89C5131

MISO P1.5

SCK P1.6

MOSI P1.7

SS P2.0

The SS (Slave Select) line into the TFT128 is not part of the MCU SPI interface.
This is a generic output which is used to select the TFT128 when the MCU wants
to begin a communication.

The switch detection from the TFT128 is configured for both internal and external
monitoring. SW2 is grounded on the TFT100 and SW1 is looped into SW-
DETECT. SW1 is also connected to the MCU P2.3 which is configured as an
input. The MCU can independently monitor switch closures via this port input.

6 TFT100 Dev Kit User’s Guide Hardware

 7

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 7 of 22

G E T T I N G S T A R T E D

Programming Tools

Atmel FLIP
The onboard MCU on the TFT100 is an Atmel AT89C5131. This is 8051-based
CPU which is reprogrammable via USB.

Atmel provide a programming utility called FLIP which should be downloaded
from Atmel’s website:

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886

To run FLIP also requires the Java Runtime Environment. Atmel offer a FLIP
download that includes the Java Runtime Environment or a FLIP download
without this for users who already have Java installed. There is also a Java
Runtime install included on the accompanying TFT100 Dev Kit CD.

Use of the FLIP program is beyond the scope of this document as the “ScreenKey
USB Programmer” provides a simple functional subset of FLIP for use with the
TFT100. Installation of FLIP and Java Runtime is a necessary precursor to using
ScreenKey USB Programmer.

FLIP is offered for both Linux and Windows.

ScreenKeys USB Programmer
The accompanying TFT100 Dev Kit CD includes a folder called “ScreenKey USB
Programmer”. This includes a command-line utility which identifies when the
TFT100 is attached via USB and programs a specified hex file automatically.

To use this utility, copy the contents of the “ScreenKey USB Programmer” utility
to a local folder on your own computer. Included in this folder is the current
version of the TFT100 firmware (called TFTDemo.hex).

Run the utility by running the included batch file (USBProg.bat) or opening a
command window, navigating to the local folder and typing:

 <drive>:\<local folder>\”ScreenKey USB Programmer” TFTDemo.hex

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886

8 TFT100 Dev Kit User’s Guide GETTING STARTED

i.e. pass the name of the hex file to be programmed to the utility on the command
line.

Note that ScreenKey USB Programmer only runs under Windows.

Programming Mode
The TFT100 does not automatically boot into USB programming mode. Its
default startup mode is to run the user programmed application.

To enter programming mode, hold the PROG button on the TFT100 while
plugging it into a USB socket.

First-time Device Identification
The first time the TFT100 is plugged in, it will identify that an unknown device
has been attached. Depending on your operating system, specify that you want to
install a specific driver from a specific location.

Browse to the accompanying CD, and open the folder “USB DFU Driver”. This
will begin installation of the Atmel AT89C5131 programming driver files.

After installation completes, open Device Manager and you should see the
following entry that confirms the device has been installed successfully:

 LibUSB-Win32 Devices
 AT89C5130/AT89C5131

 Programming Tools 9

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 9 of 22

SDCC Compiler
The accompanying TFT100 demonstration source code is written in “C” for the
SDCC compiler.

SDCC is a free compiler which can be downloaded from the web:

http://sdcc.sourceforge.net/

Go the download page and download the relevant install for your operating
system.

The supplied source code compiles correctly with version 2.9 of SDCC. A
distributable install of 2.9 for Windows is included on the accompanying CD.

Startup Sequence
Before beginning programming the TFT100, the following sequence should be
adhered to:

1. Attach TFT100 to USB socket and ensure pre-programmed application runs
correctly. Press button and note that on-screen images change.

2. Remove USB cable and re-power while holding the PROG button. Release
the PROG button after the TFT128 ScreenKey screen lights up.

3. Point your operating system to the Atmel USB DFU drivers on the
accompanying CD in folder “USB DFU Driver”. Wait for computer to
successfully finish driver installation.

4. Check Device Manager for a new entry called “LibUSB-Win32 Devices” and
a sub-entry called “AT89C5130/AT89C5131”.

5. Install FLIP from web download or use install provided on CD.

6. Install SDCC from web download or use install provided on CD.

7. Copy CD folder called “ScreenKey USB Driver” to a suitable local
drive/folder.

8. Copy the TFT100 demo source code from the folder called “TFT100 Source”
to a suitable local drive/folder.

You are now ready to begin modifying the supplied source code and to make the
TFT128 perform.

http://sdcc.sourceforge.net/

10 TFT100 Dev Kit User’s Guide DEMO FIRMWARE

D E M O F I R M W A R E

Demonstration Source Code

File Listing
The source code for the TFT100 is supplied on the accompanying CD in the
folder “TFT100 Source”.

The included files are:

 TFTDemo.c Main runtime file with all functions to access TFT128
 Images.c Storage for different images used in the demo
 At89C5131.h Includes SDCC compatible SFR definitions
 Ext_5131.h Defines masks for accessing SFR registers
 Compiler.h Generic definitions for various variable types
 Build.bat Command-line utility to build application
 TFT100v1_0.hex Original hex file as pre-programmed in TFT100

A subfolder called “temp” exists off the source folder. During compilation,
SDCC generates various files (e.g. map, mem, asm, lst, etc) and these are stored in
the temp folder.

A successful compilation results in a file called TFTDemo.hex created in the
source folder. This can be directly programmed into the TFT100 using the
ScreenKey USB Programmer utility by running the supplied batch file from the
command line (remember to navigate to the folder where ScreenKey USB
Programmer resides and also to copy the TFTDemo.hex file into this location):

 <drive>:\<local folder>\USBProg

or, running the utility directly:

 <drive>:\<local folder>\”ScreenKey USB Programmer” TFTDemo.hex

Remember to include the quotation marks as otherwise the command line will fail.

Source Code Structure
The source code for the TFT100 Dev Kit demo is quite simple. It simply scrolls
repetitively through a series of screens or pages displayed on the TFT128 that

 Demonstration Source Code 11

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 11 of 22

each demonstrates a feature of the TFT128. Navigation through the sequence is
controlled by pressing the TFT128.

Open TFTDemo.c and navigate to main() which is the final function in the
module.

The first task implemented is to configure the TFT100 hardware. There are no
interrupts or timers used, so this function simply configures the MCU registers
accordingly and sets up the SPI interface.

Before beginning the page display sequence, main() displays a TestCard image on
the TFT128 using the RLE compressed 256-color image from Images.c. It also
downloads the ScreenKeys logo image into the TFT128 storage memory for later
recall.

The application then begins to wait for a keypress detection. This is implemented
as “external switch monitoring” from the TFT128 perspective. That is, the
TFT100 MCU monitors its input line P2.3 which is held high until the TFT128 is
pressed. Once a switch press is detected, the application executes the next
command sequence. Each command sequence is designed to demonstrate a
different aspect of the TFT128 command set.

The source code is well documented and does not need to be elaborated on here.
The command sequences should be examined in conjunction with the TFT128
Datasheet (a copy of which is included on the accompanying CD).

TFT128 Command Implementation
Commands issued to the TFT128 must comply with the TFT128 datasheet,
including adhering to the inter-byte delay between bytes and implementing the
flow control based on the SSB return byte.

There is a low-level routine called SPI_SEND_BYTE() which transmits a passed
byte over SPI and resends the byte if the returned SSB indicates that the TFT128
is currently busy.

There is a higher-level function (SPISendPktC and SPISendPktX) that use
SPI_SEND_BYTE to transmit a full command packet. This function selects the
TFT128 and sends the command header, computes and sends the XOR byte, and
then sends the length and body of the rest of the command. Finally, before exiting
it issues 00 bytes to read back any relevant data associated with the command. It
deselects the key prior to exiting. As each byte is transmitted, this function
checks the returned SSB for a NACK and exits the sending process if one is
received after resyncing the key by sending 00 bytes until the key returns OK
again.

Two functions are supplied for this process: SPISendPktC and SPISendPktX.
The only difference between these is that the underlying compiled machine code

12 TFT100 Dev Kit User’s Guide DEMO FIRMWARE

is simplified and executes faster if the inherent pointers are predefined for
commands stored in code space (use SPISendPktC) or stored in xdata space (use
SPISendPktX).

Text Handling
Text handling is a major feature of the TFT128 using the internal font and
character generator.

The TFT128 maintains an internal cursor position and it automatically displays
text in sequence form the current cursor position.

However, many text displays will require accurate positioning to ensure test is
centred or simply to format how the text is displayed to the user. To
accommodate this, the TFT128 supports a cursor positioning command.

The TFT100 source code includes a function that receives a x/y starting position
and the required text string, and then issues the appropriate commands to the
TFT128 to display this text at the required position.

High-Speed Mode
For fast changing images, many users will want to operate the TFT128 in high-
speed mode. This mode accommodates a frame refresh rate up to 10 frames per
second.

The Atmel MCU does not have sufficient capacity or available memory space to
supply full-screen images at 10 frames per second.

To help users to investigate high-speed mode, the supplied source code
demonstrates how to activate high-speed mode and how to toggle the TFT128
back into command mode afterwards. It is possible that many users will want to
jump between the two modes for different uses.

To display some data on the screen in high-speed mode, the source code converts
256-color images (see Images.c) into 16-bit color images using the color palette
included in Images.c. Two functions are provided for decompressing RLE
compressed 256-color images for this purpose: one is written entirely in ‘C’ and
the other is mostly in assembler. These are provided for information purposes
only. It is not recommended to convert RLE compressed or any 256-color image
into a 16-bit color image for transmission via high-speed mode.

The fastest refresh rate is achieved using 256-color RLE compressed images. The
frame refresh rate is primarily dependent on the communications speed to transmit
the information according to the SPI restrictions. Although command mode has a
longer inter-byte delay, the significantly reduced number of bytes to transmit an

 Demonstration Source Code 13

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 13 of 22

RLE compressed image can often mean a massive reduction in the time required
to display that image on the key.

Commands Demonstrated
The supplied TFT100 source code demonstrates almost all of the commands
available with the TFT128:

• sending 256-color images (RLE compressed and uncompressed)

• sending 16-bit color images in high-speed mode

• exiting and exiting high-speed mode

• displaying text and setting text positioning

• blanking the display to a certain color

• changing the default text and background colors

• replacing a specific color in a sub-window of the display

• adjusting the LED backlight

• storing and recalling images from the TFT128 image store

• setup a flashing message on the screen

• operate in landscape and portrait modes

• the effects of changing the wipe direction for images

• overlaying text on a displayed image

• how to read information from the key, e.g. free memory in the image
store, the TFT128 version number and current display contents.

 14

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 14 of 22

G R A P H I C I M A G I N G

Image Description & Preparation

The TFT128 supports several different types of images.

The most effective type which maximises the full color display at 16-bits per color
or 65,536 colors is to use 16-bit full-color images. These images are defined with
a 5-6-5 color definition for RGB (see TFT128 datasheet). When using this type of
image it is best to transmit using high-speed mode as the transmission of 32kb
(128 * 128 * 2 bytes) is most efficient with only a 3.3usec inter-byte delay.

However, storage and manipulation of multiple full-color images requires a high
overhead in memory storage. The TFT128 supports other image types which help
to reduce the memory overhead for image manipulation.

256-Color Images
A useful type of image when memory is restricted is 256-Color palletised images.
These images are defined with one byte per pixel where this byte is an entry into a
lookup table. The lookup table is a palette of colors which are then displayed for
that pixel.

This means that we can have a maximum of 256 colors only in any particular
image. However, the resulting image is very well defined and particularly where
the device is a selection device and not a primary display device.

All the images used in the TFT100 source code are 256-color images.

The color palette used in the TFT128 is two-bytes per color (i.e. 16-bit) as per the
16-bit color definition in the TFT128 datasheet.

The TFT100 source code implements a 256 color palette that directly emulates the
color palette used in Windows BMP files for display on Windows PC’s. This is
the same factory default color palette used by the TFT128.

Although the palette in the TFT128 can be modified it is preferable to always use
the same palette for all TFT128 images so that the palette does not need to be
modified and so that all images maintain the same color consistency as expected.

Adobe Photoshop is a useful tool for creating images for use on the TFT128.

 Image Description & Preparation 15

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 15 of 22

First open or create a new image in Photoshop. This should be a maximum size of
128 * 128 but smaller images will take up less space.

For example, here is a large image (261*261) that we want to prepare for use in
the TFT128:

16 TFT100 Dev Kit User’s Guide GRAPHIC IMAGING

First, it is necessary to change the image to use a color palette. Select “Image” ->
“Mode” -> “Indexed Palette”, and then select “System (Windows)” from the
dialog window:

Next, adjust the image size to our requirements (e.g. 60*60). Select “Image” ->
“Image Size…” and set the new size in the dialog box.

Finally, save the image as a BMP file and 8-bit color RLE compressed:

 Image Description & Preparation 17

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 17 of 22

This will produce a BMP file where the image data bytes are stored from bottom-
left position going left to right and from bottom to top of the displayed image.

When sending this image to the TFT128, remember to set the wipe direction as
bottom-up.

Once the image is created as a BMP, the image data must be extracted into a C-
array suitable for use in the C program. A good editor for this is the 010 Editor.

Open the BMP file in 010 which includes a BMP format identifier:

Highlight the “rleData” section of the identifier and this selects the image data
only. Next export this as a C-code:

18 TFT100 Dev Kit User’s Guide GRAPHIC IMAGING

The output of this can be directly used in the Images.c file. Remember to provide
a suitable name to the array and to specify that it is stored in code space.

16-bit Color Palette
The BMP file created above uses a 256-color palette. However if you examine
this palette in 010 Editor it is obvious that the colors are not 16-bit but 24-bit.
Each color is defined with 4 bytes, one byte each for red, green and blue and one
byte always set to 00.

It is not necessary to change the color palette so long as all images are created
with the Windows System palette. Then the factory default palette in the TFT128
may be used without modification.

However, to create a new palette from a Photoshop created 256-color image, the
010 Editor is again very useful. 010 provides a scripting feature which allows
data to be manipulated with C-like code scripts. Here is a 010 script for
converting a series of 4-byte color definitions (24-bit color) to a 16-bit (2 byte)
color definition suitable for the TFT128:

// Define variables
const int BLOCK_SIZE = 1024;
uchar buffer[BLOCK_SIZE];
quad size, pos;
int i, bufsize;
int CurrFile, NewFile;
uint16 newRed, newGreen, newBlue;
uint16 newCol;
float tmp;

// Check that a file is open
if(FileCount() == 0)
{
 MessageBox(idOk, "RGBQUADto565", "RGBQUADto565 can only be
executed when a file is loaded.");
 return -1;
}

// Get current file handle
CurrFile = GetFileNum();

// Open new file to store converted data
NewFile = FileNew();

// Read file as a set of blocks

 Image Description & Preparation 19

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 19 of 22

// - more efficient this way
FileSelect(CurrFile);
pos = 0;
size = FileSize();

//Write start of C-array
FPrintf(NewFile,"unsigned int ColorTable[256] = { \r\n ");
while(size > 0)
{
 // Read set of bytes from the file
 bufsize = size < BLOCK_SIZE ? size : BLOCK_SIZE;
 ReadBytes(buffer, pos, bufsize);

 // RGBQUAD is 4 bytes - <BLUE> <GREEN> <RED> <reserved>
 for(i = 0; i < bufsize; i=i+4)
 {
 // Calc RED value converted from 8-bit val (255)
 // to 5 bits (31)
 tmp = buffer[i] * 0x1F;
 tmp = tmp / 0xFF;
 newBlue = tmp;

 // Calc GREEN value converted from 8-bit val (255)
 // to 6 bits (63)
 tmp = buffer[i+1] * 0x3F;
 tmp = tmp / 0xFF;
 newGreen = tmp;

 // Calc BLUE value converted from 8-bit val (255)
 // to 5 bits (31)
 tmp = buffer[i+2] * 0x1F;
 tmp = tmp / 0xFF;
 newRed = tmp;

 // Ignore last byte in RGBQUAD

 // Create new 16 bit color value
 newCol = (newRed << 11) | (newGreen << 5) | (newBlue);

 // Write new 16-bit color value to new file
 //FPrintf(NewFile,"Buffer %x %x %x
%x\n",buffer[i+j],buffer[i+j+1],buffer[i+j+2],buffer[i+j+3]);
 //FPrintf(NewFile,"Red %2x Green %2x Blue
%2x\nCombined %2x\n",newRed,newGreen,newBlue,newCol);
 FPrintf(NewFile, "0x%2.04x, ",newCol);
 }

20 TFT100 Dev Kit User’s Guide GRAPHIC IMAGING

 // Advance to next block
 pos += bufsize;
 size -= bufsize;
}

FPrintf(NewFile, "};\n");

return 1;

This routine is easily converted using another programming language or tool to
extract 16-bit color form a 24-bit color palette. Remember to extract the palette
information from the raw BMP file before running the conversion routine. The
output of this routine is an ASCII file formatted for direct inclusion into a C
source file.

 21

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 21 of 22

A P P E N D I X A

Documentation Control

A.1 Change Control
This document is the responsibility of the author and is subject to formal change
control after the initial approved release (i.e. issue 1.0).

A.2 Abbreviations Used/Terms of Reference
Fixed Keys Standard POS Console keys--contrast with ScreenKeys.

LED Light Emitting Diode. There are 4 LEDs on the Model 6000

LRC Longitudinal Redundancy Check--a byte used to verify that
the data read from a Magnetic Card is valid.

MSR Magnetic Stripe Reader

O/S Operating Systems -- MS DOS, UNIX, OS/2, Windows
etc...

host Personal Computer.

A.3 Historical Change Reference
Issue Date Author Changes Made

22 TFT100 Dev Kit User’s Guide

Document: TFT100 Dev Kit User's Guide 1.0
Filename: TFT100UG.doc
Page: 22 of 22

A.4 Change Summary

	Introduction
	Software Updates
	Sample Code
	Disclaimer
	Dev Kit Hardware
	Atmel FLIP
	ScreenKeys USB Programmer
	Programming Mode
	First-time Device Identification
	SDCC Compiler
	Startup Sequence
	File Listing
	Source Code Structure
	TFT128 Command Implementation
	Text Handling
	High-Speed Mode
	Commands Demonstrated
	256-Color Images
	16-bit Color Palette
	A.1 Change Control
	A.2 Abbreviations Used/Terms of Reference
	A.3 Historical Change Reference
	A.4 Change Summary

